Как улучшить ответ нейросети: примеры и инструкция
Это делает их особенно эффективными в обработке длинных текстов и понимании сложных контекстов.Развитие больших языковых моделей (LLM) — совместная работа лингвистов и дата-сайентистов. Дата-сайентистам необходимо хорошо владеть языком Python и иметь уверенный математический бэкграунд. Например, на курсе «Специалист по Data Science» студенты учатся работать с pandas, Scikit-learn, Catboost — библиотеками для Python, которыми ежедневно пользуются специалисты. Например, так появилась YandexGPT 3 — это как раз модель нового поколения. Работа с пользователями, их вопросы, их оценки на дальнейшее обучение готовой LLM прямо уже не влияют. На первом этапе модель учится на специально отобранном большом наборе данных. Pretrain-датасет может быть достаточно большим — до многих терабайт. LLM применяются для автоматической генерации текстов, от новостных статей до маркетинговых материалов. Такие модели облегчают помогает копирайтерам и редакторам работать эффективнее, предлагая черновики текстов или даже создавая полные статьи. Поскольку каждая модель тестировалась по определенной задаче, будет логично рассмотреть все 6 моделей в разрезе каждой задачи. Однако, если модель не справлялась с задачей с первого раза, промт редактировался для получения более точного результата. Это позволяло проверить гибкость и адаптивность моделей к изменениям запросов. Saiga-Llama3-8b — версия модели Llama3, дообученная на русском датасете. RNN построены вокруг скрытого вектора состояния, который действует как блок памяти для хранения информации об обрабатываемой последовательности. Языковые модели с их способностью понимать, синтезировать и даже воспроизводить человеческий язык легли в основу новаторских приложений, влияющих на наш цифровой опыт. Языковые модели привлекли внимание всего мира и произвели революцию в том, как люди взаимодействуют с машинами в постоянно меняющемся мире технологий. Например, vLLM, о которой рассказывали в статье, или другие популярные. Для работы с LLM лучше всего подходит Linux — операционная система поддерживает NVIDIA Collective Communications. https://kang-seoworldsuccess.mdwrite.net/prompty-i-iskusstvennyi-intellekt Модель может работать и на Windows, но ее техническая документация будет хуже.
Продвинутые методы улучшения качества LLM-решений: Fine-tuning
Модель предназначена для обработки запросов, генерации текста и выполнения других задач, связанных с естественным языком. В статье рассмотрим, какие LLM подходят для задач на русском языке, https://towardsdatascience.com протестируем их по разным параметрам и выявим лидеров. Мы оценили генерацию текста, ответы на вопросы, исправление ошибок и другие функции. CoT prompting требует от модели выполнения более сложных вычислений на каждом шаге рассуждения.
- Это естественная практика — даже в профессиональных дискуссиях о моделях участники могут увлечься интересной деталью и потерять основную цель обсуждения.
- Нейросеть не только отказалась давать ответ, но и пригрозила их вообще «забанить», если они еще будут спрашивать что-то подобное.
- При правильном обучении они могут обрабатывать практически любые запросы.
Бонус: Экспериментальное обучение
Чтобы языковая модель могла обрабатывать текст и выдавать адекватные ответы, её обучение проходит несколько этапов. Каждый этап играет важную роль в развитии способностей модели распознавать и генерировать тексты в контексте. На основе этого обучения они способны делать предсказания для новых, ранее не встречавшихся данных. Важными составляющими машинного обучения являются глубокое обучение и нейронные сети, которые позволяют решать особенно сложные задачи анализа данных. Непрерывный прогресс в создании языков позволит получать более реалистичные и похожие на человека результаты, расширяя границы того, чего могут достичь языковые модели. Подходы к обобщению текста используют языковые модели для сжатия огромных объемов информации в краткие и полезные резюме. https://thenextweb.com/artificial-intelligence В результате они могут создавать текст, соответствующий стилю и содержанию обучающих данных. Благодаря параллельному интенсивному использованию процессов внутреннего внимания конструкция преобразователя позволяет модели изучать сложные корреляции между входными и выходными последовательностями. https://amber-zebra-zdq9fs.mystrikingly.com/blog/15